Derivata della somma di funzioni – Esercizio 4

derivata della somma di funzioni esercizio 4

Per risolvere il seguente esercizio si può procedere trovando la derivata della prima funzione e quella della seconda separatamente. Dobbiamo ricordare due regole fondamentali delle potenze:

x^{-k} = \frac{1}{x^k}

\sqrt[s]{x^k} = x^{\frac{k}{s}}

Prima di individuare la derivata conviene sempre riscrivere tutto il polinomio sotto forma di potenze del tipo x^k per sfruttare semplicemente la regola di derivazione d[x^k] = kx^{k-1}

 

Comments

comments

Lascia un commento

Il tuo indirizzo email non sarà pubblicato. I campi obbligatori sono contrassegnati *